awa

MEMO

то:	Harrison Hitchins	DATE:	28 February 2022
FROM:	Warren Uys	PROJECT NO.:	J000402
SUBJECT:	Ropata Village redevelopment - Resource	Consent – 3 Waters I	Design Summary

BACKGROUND

Windsor Management are re-developing the 4,030m2 site at 758 - 760 High Street, Boulcott, in Lower Hutt.

Image 1: Proposed Development

The proposed development includes a retirement village of approximately 50 apartments including 1, 2 and 3 bed typologies. The proposed build structure is 3 stories high and includes a Café, Reception/Administration, Activity Room and a Lounge.

EXISTING COUNCIL UTILITIES

Water, wastewater and stormwater pipes are all present within the High Street road corridor, in front of the proposed development (refer to Image 2 below).

The site currently discharges stormwater runoff during the primary storm event to a public manhole located near the properties' south-west corner. Downstream of the manhole a 225mm pipeline crosses High Street and discharges into a 300mm main on the north-west side of High Street. This 300mm main is shown to be approximately 1.6m deep.

A public sewer main exists to the north-west of the site (225mm dia. – 3.3m deep) within the carriageway, and another to the south-east (150mm dia.) within the rear of several Dyer Street properties.

A public water main (100mm dia.) exists outside the front of the site within the High Street carriageway.

No alterations are proposed to these existing stormwater, sewer or water mains other than the proposed new connections to these mains.

Image 2: Existing Aerial and GIS Services

EXISTING PRIVATE UTILITIES

Ropata Village currently has internal water, stormwater, wastewater and gas lines. These existing pipes will need to be removed as they will run under the proposed structures and are likely not in a condition where they can be reused. Hutt City have (via Wellington Water) stated that the existing sewer connections can be reused subject to a condition and capacity assessment, and provided that the existing buildings/structure are re-configured only (i.e. not upsized). Water laterals will require replacing if they are not of an MDPE material.

It is therefore not recommended that the existing lines are maintained for the proposed development.

COUNCIL ADVICE

Advice regarding the 3 waters was received from Hutt City Council on the 2 August 2021. The advice was via Wellington Water and is appended to this report in full (refer Appendix B). A summary of the key aspects is below:

Stormwater

- There is no flooding shown within the site, or in the surrounding sites, in the current Waiwhetu flood model.
- New building floor levels are therefore to comply with the NZBC.

Wastewater

- The High Street local system (225mm dia.) discharges into the trunk network (300mm dia.) There appears to be no spare capacity in this local network during a 1-year LTS design event. Furthermore, this part of the network is heavily surcharged.
- A second local network exists towards Dyer St. and appears to have at least 5 litres/sec spare capacity during a 1-year LTS design flow. This network then discharges into the same 300mm trunk network.
- The trunk network eventually discharges into the Barber Grove pump station. A significant portion of the trunk network appears to already over capacity (i.e. no spare capacity) in a 1-year design event. There are two engineered overflows at the pump station at the incoming main and the rising main. They both discharge to the Hutt River.
- Further development of this property will exacerbate this.
- It is assumed that the structure will stay as is with only possible reconfiguration. If this is the case the existing laterals could be reused however the applicant will need to reassess these and ensure they are in good condition and of capacity to convey the flow.

Water

- The model shows that minimum pressure at the point of supply on the public main is expected to be about 45-50m, which meets the level of service criteria for pressure.
- The model also indicates that available fire flow capacity from the existing hydrant(s) is expected to be compliant with the NZ Fire code for residential areas (FW2).
- However, considering the building and their usage, it is recommended that a hydrant flow test is carried out and the compliance with the NZ Fire code requirements are approved by a fire engineer.
- The applicant will need to assess the water supply lateral and if not constructed of MDPE will need to change these to MDPE.

PROPOSED NEW PRIVATE UTILITIES

The proposed alignments of the internal 3-waters networks are shown in Figure 3. Further details are also provided in the attached engineering drawings.

Figure 3: Proposed 3 Waters Alignments

STORMWATER

Proposed Design Standards

The following design standards have been adopted unless otherwise referenced.

- NZBC Clause E1 Surface Water
- Section 4 of the Regional Standard for Water Services (version 2.0: May 2019)
 - o 4.4.5 Private Connections to the Public Stormwater System

Design Storm Flows

Stormwater flow and volume calculations have been undertaken to assess the existing and developed scenarios. A summary of these calculations is shown in the table below. Full calculations can be found in Appendix C.

	10% AEP	10% AEP	1% AEP 10m	1% AEP 20m
	10min (RSfWS)	20min (RSfWS)	(RSfWS)	(RSfWS)
Existing Discharge (L/s)	70.82	47.31	111.77	73.90
Developed Discharge (L/s)	71.99	48.09	113.61	75.12
Difference (L/s)	+1.17 (1.65%)	+0.78 (1.65%)	+1.84 (1.65%)	+1.22 (1.65%)
Neutrality Volume (m ³)	0.70	0.94	1.10	1.46

Tahle	$1 \cdot A$	dditional	Stormwater	Runof	f
TUDIC	1.7	aantionai	Stornwater	nunoj	1

Proposed System

The proposed stormwater lines are to run along both sides of the buildings. This will allow the roof water to be captured without having to direct the water through or under the buildings themselves. The stormwater collected by this network will drain out to High Street and into the existing public network. The existing connection to the public manhole will be replaced and upsized to a 225mm dia. pipe.

Two (type 2) sumps are proposed to collect the stormwater in the driveway and carpark areas. These sumps will be connected to the proposed internal stormwater pipes collecting water from the roofs. These pipes have been designed for the 10-year rainfall event. However, in the case that these sumps are overwhelmed or blocked, the carpark will temporarily flood and then flow via a secondary flow path around the southern building to the existing release points from the site (the secondary flow paths are shown as blue arrows).

All internal pipes have been sized for the 10-year rainfall event, at a minimum gradient of 0.5m/s. Resulting pipe sizes range 150mm – 225mm dia.

> Site Neutrality

Although there was no requirement in Wellington Water's initial advice for attenuation, it is good practice to consider the impact of any increase in runoff due to the proposed re-development of the site. An analysis of the runoff increase due to the proposed development has therefore been completed. This was done by comparing the roof and hardstand areas between the existing and proposed site. As shown in the above table, it was found that the increase in runoff was only 1.5 m³ for the 20-min 100-year storm (Wellington Water generally consider the 20min duration to be critical). This is because there was very little increase in the impervious area in the proposed development.

If there are **any** existing stormwater detention structures, such as tanks with a controlled outlet **or temporary ponding**, then the development will need to provide the same detention capacity plus the

additional capacity as required to mitigate the additional runoff from the development. If this is required, then the proposed carpark design provides sufficient temporary attenuation within the carpark and existing pond areas of approximately 17 m³ (to the spill point at RL 11.370m (WLG 1953 datum)).

Overland Flow Path Impact

Based on an analysis of the existing topographical data provided, it appears that secondary runoff currently generated from the site flows towards three locations along the south and south-east boundaries of the site, being the rear of No.16, 20 and 26 Dyer Street. Three existing sumps are located in these low points, and although bounded by vertical kerbs would overflow in a concentrated fashion into these properties when their capacities are exceeded.

Figure 4: Existing Overland Flow Paths

Runoff from the existing central courtyard and pond area would first temporarily flood to an RL of 11.500m (WLG 1953 datum).

The new design will generally imitate the above temporary ponding, and the existing secondary flow paths. These aspects are to be finalized during the detailed design phase. It is therefore considered that the current overland flow system will remain generally unaffected during the 1% AEP peak storm due to the re-development of the village.

Required Floor Level

The proposed maximum temporary water level within the central carpark/landscape area is 11.370m (WLG 1953 datum). This is the designed 'spill-over' level to the proposed southern secondary flow path. A minimum floor level of RL 11.700m has also been provided by the architect. This allows for 330mm of freeboard above the maximum flood level. Although the proposed temporary ponding is >100mm in depth, it will not extend from the carpark/accessway directly to any building. Therefore, the proposed freeboard is in excess of the required 150mm (NZBC E1 Clause 4.3.1).

Stormwater Quality

It is not known whether Hutt City require any stormwater quality measures to be incorporated into the redevelopment of such sites as this Village.

However, the Regional Standard states that "Where practicable, and unless directed otherwise by the council, sustainable stormwater techniques as outlined in section 4.2.12 should be employed to minimise the potential adverse effects of development.". The Standard further states that "Consideration shall be given to pre-treatment of stormwater discharges to aquatic receiving environments, including harbours and inlets, to minimise potential adverse effects.".

While there is no direct discharge to any immediate water body that could be considered to be of ecological value, an opportunity exists within the proposed carpark and landscape area to capture and treat runoff via rain gardens. Calculations in Appendix C confirm that for 100m² of impervious area, a Water Quality Volume (WQV) of approximately 3m³ is required to be collected and treated by a minimum rain garden area of approximately 6m². This is based on capturing a rainfall depth of up to 30mm. Final rain garden locations and contributing impervious areas are to be confirmed based on the above requirements.

WASTEWATER

Proposed Design Standards

The following design standards have been adopted unless otherwise referenced.

- NZBC Clause G13 Foul Water
- Section 5 of the Regional Standard for Water Services (version 2.0: May 2019)

Proposed System

The re-development of the village will result in an increase in sewer flow. This is due to the increase in resident beds, and the addition of a Café. It is expected that the Average Dry Weather Flow (ADWF) will increase from 0.169 L/sec to 0.407 L/sec (refer to attached full calculations in Appendix C). As described above, Wellington Water have indicated that the sewer network in High Street is over capacity, and that the Dyer Street network contributes to downstream overflows at the pump station. As such, sewer mitigation will be required for the development.

HEADING	PREDEVELOPMENT	POST DEVELOPMENT
ADWF	0.169 L/sec	0.407 L/sec
PDWF	1.47 L/sec	3.5 L/sec
PWWF	1.55 L/sec	3.58 L/sec

Tabla	2.	Incroaco	in	Couvor	Elow
rabie	Ζ.	increase	m	Sewer	FIOW

Due to the above, it is proposed to collect and store 100% of the sewer flow generated by the village within a pump station chamber (plus emergency storage), and pump this into the High Street network during off peak periods. The allowable peak pump rate should be no greater than the predevelopment rate shown above. Pump selection and storage volumes are to be finalised during the detailed design phase.

Internal pipe reticulation (gravity) has been designed to ensure minimum self-cleansing velocities are achieved. Pipe mains are to be 150mm dia. with gradients ranging 1.5 - 1.6%.

WATER

Proposed Design Standards

The following design standards have been adopted unless otherwise referenced.

NZBC Clause G12 Water Supplies

- Section 6 of the Regional Standard for Water Services (version 2.0: May 2019)

Potable Water System

The expected peak potable water demand for the proposed development is $Q_{peak}=2.92$ L/sec. This has been calculated using the Wellington Water Standards (refer to attached calculations in Appendix C). Modelling by Wellington Water indicates that there is sufficient flow and pressure (40 – 50m) to supply the development.

Calculations confirm that for the entire ring main, a DN 63 mm 12.5 PE100 water pipe will suit the requirements of the site, allowing for an expected total head loss of 6.16m.

A dedicated DN 63mm potable water line to the Village is proposed, with a flow meter and non-return RPZ.

➤ Fire Flow

The required fire flow can be calculated using the NZ Fire Standard SNZPAS 4509-2008. A fire engineering assessment will be required to confirm the Hazard Category and the largest fire cell. For this assessment, it is assumed that the development has a hazard class of FHC 1 and a fire water classification FW4. This requires 50 L/s within 135m and an additional 50 L/s within 270 m. This can be supplied from a maximum of 4 Hydrants. A further demand may be necessary to be taken into account for sprinkler flow (generally 400-500 L/min).

The hydrant flow testing undertaken by AON in September 2021 on a hydrant outside 2 Lincoln Ave/776 High Street confirmed that the main can provide a flow of 44 L/sec at a pressure of 540 kPa. This hydrant is some 88 m from the site. There are three further hydrants within 70 m of the site.

It is therefore likely that the above fire requirements can be met by the network, however this will need to be confirmed. Likewise, the size of the proposed fire supply line to the apartment complex will need to be determined based on the final fire demand and any fire sprinkler requirements of the village. Assuming a sprinkler demand of 500 L/min (8.33 L/sec) and an internal hydrant demand of 12.5 L/sec, then a dedicated 90mm ID fire main will be sufficient to provide fire flows to the development (at a head loss of 10.2m accounting for static losses).

SUMMARY:

The proposed re-development of the retirement village at No. 758 - 760 High Street, Boulcott, Lower Hutt, can be serviced with wastewater, stormwater, and water connections as described above, and as shown on the attached Awa Drawings. The design is subject to confirmation of details, in particular the following:

- 1) Existing site storage volume (temporary ponding or underground tanks).
- 2) Final rain garden locations and contributing impervious areas are to be confirmed.
- 3) Allowable peak sewer discharge into the High Street local network (to be confirmed by Wellington Water).
- 4) Sewer pump selection and storage volume.
- 5) Final total fire flow demand by a qualified Fire Engineer.

LIMITATIONS:

This memorandum has been prepared to support the Resource Consent application only, for the development at 758 – 760 High Street in Boulcott, Lower Hutt. Use of this document and any document or drawing referred to herein, may not be used for any other purpose without written permission from Awa.

ATTACHMENTS:

- Appendix A Awa Drawings
- Appendix B Wellington Water Initial Advice
- Appendix C Awa Design Calculations

Warren Uys

INTERMEDIATE CIVIL ENGINEER

a: Level 1, 1 Ghuznee St, Wellington 6011

m: +64 22 626 9026 e: warren.uys@awa.kiwi w: www.awa.kiwi

APPENDIX A: AWA DRAWINGS

	treet T			DRIVEV	VAY		CAR	PATHWA PARK	١Y
									-
		I	SS PIPE 0.1	5 m Diam	I	55 PIPE 0.15	m Diam		
DATUM 5									
FINISHED SURFACE		11.82	11.72	11.61	11.50	11.37	11.28	11.39	
EXISTING GROUND	11.78	11.90	11.61	11.57	11.54	11.57	11.48	11.41	
CUT/FILL		0.12	-0.06	0.0	0.0	0.24	0.25	0.07	
OFFSET	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00	

CROSS SECTION 1

	STREET		F	UNITS	2/3	DRIVEV	VAY	CAF	RPARK	PAT	HWAY ⊢⊣			U	NITS 9			
	HIGH 2			/ /		SS PIPE (0.15 m Diam	SUMP					SW PI	PE 0.15 m D	iam		SW PIPE C	0.15 m Diam
DATUM 5																		
FINISHED SURFACE		11.63	11.66	11.69	11.58	11.30	11.19	11.18	11.25	11.32	11.29	11.44	11.64	11.70	11.70	11.46		
EXISTING GROUND	11.92	12.04	11.83	11.79	11.66	11.56	11.35	11.49	11.56	11.44	11.47	11.46	11.55	11.42	11.37	11.25		
CUT/FILL		0.46	0.22	0.15	0.13	0.32	0.20	0.36	0.36	0.17	0.23	0.07	-0.04	-0.23	-0.28	-0.16		
OFFSET	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00	55.00	60.00	65.00	70.00	75.00	80.00	
								C			2							

UNITS 2 DRIVEWAY

CROSS S	SECTI	ON 4
---------	-------	------

DRIVEWAY

		` 🗸 🖊	777				
					Z		f
						SW PIPE	0.225 m Diam
					SS P	IPE 0.15 m l	Diam
DATUM 5							
FINISHED SURFACE		65	67	69	59	61	
		11.(11.(11.0	11	11.	
EXISTING GROUND	92	1	0	2	52	9	
	11.5	11.9	11.8	11.7	11.6	11.5	
CUT/FILL		0.31	0.18	0.07	0.38	-0.00	
OFFEFT			0	-			
	0.00	5.00	10.00	15.00	20.00	25.00	
			CROS	SS SECTI	ON 3		

HIGH STREET

	-								
		\sim				7/_	///		
		s s	W PIPE 0.22	5 m Diam		SW PIP	E 0.225 m D	iam	
			SS PIPE O	15 m Diam					
			55 F IF E 0.						
				•					
DATUM 5									
INISHED SURFACE		44	36	30	27	31	34	36	
	_	11.4	11.3	11.3	11.5	11.0	11	11.3	
XISTING GROUND		53	64	59	61	56	50	56	
		11.1	11.(11.1	11.(11.(11.(11	
CUT/FILL		4	2	4	8	0	0	ы	
	_	0.1	0.3	0.3	0.3	0.4	0.3	0.2	
DFFSET	0	Q	8	00	00	00	8	00	
	8	5.0	6	15.	20.	25.	õ.	35.	

	PATH ⊢—	WAY	UNITS 1	3	F	CARI	PARK		ŀ	CAI	FE	PATHWAY			F	UNITS	PA 10	ATHWAY	
						CIMAD													
	•	SW PIP	²E 0.225 m [Diam	SW PIP	E 0.225 m Dia	m					SW PIPE C	0.15 m Diam	•	SW PIPE	0.15 m Dia	im	SW PIPE 0.15 m Diam	
		SS P	IPE 0.15 m I	Diam					SS PIPE 0.	15 m Diam									
																			A CUT/FILL VOLUMES FEB 2022.
DATUM 5													DATUM 5						1 Ghuznee St 4 Williamson Ave Wellington Grey Lynn Auckland 6011 1060
FINISHED SURFACE	11.31	11.69	11.70	11.60	11.39	11.20	11.28	11.49	11.70	11.70	11.70		FINISHED SURFACE	11.43	11.68	11.70	11.46		e-mail web wrodewaktwi www.awa.ktwi WINDSOR MANAGEMENT
EXISTING GROUND	11.56	11.53	11.49	11.55	11.83	11.57	11.36	11.46	11.48	11.47	11.44		EXISTING GROUND	11.45	11.48	11.45	11.32		ROPATA VILLAGE UTILITIES 758 - 768 HIGH ST
CUT/FILL	0.30	-0.11	-0.16	0.00	0.49	0.42	0.13	0.02	-0.17	-0.18	-0.21		CUT/FILL	0.07	-0.15	-0.20	-0.10		LOWER HUTT Frowing Title EARTHWORKS CROSS SECTIONS
OFFSET	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00	45.00	50.00	⁻ 55.00	OFFSET	0.00	5.00	10.00	15.00		Scale 0 mm 10 mm 20 mm 30 mm 1: \$scale Project Number Drawing Number
						CROSS	SECTIO	ON 5							CRO	SS SECT	FION 6		J000502 2213 Designed WDU Checked Approved PR Revision Signed Signed Signed A

APPENDIX B: WELLINGTON WATER INITIAL ADVICE

Warren Uys

From:	Niamey Izzett <niamey.izzett@huttcity.govt.nz></niamey.izzett@huttcity.govt.nz>
Sent:	Monday, 2 August 2021 7:58 AM
То:	Kerry Wynne
Subject:	FW: [EXTERNAL] WW Pre-app Response - 758 - 760 High Street, Boulcott - PREAPP210175 - 30 July 2021

Good morning Kerry

Hope you are doing well and had a good weekend!!

Wellington Water comments for 758-760 High Street are as below.

Thanks

Niamey Izzett

Resource Consents Planner

Hutt City Council, 30 Laings Road, 5040, Lower Hutt 5040, New Zealand T 04 570 6666, W www.huttcity.govt.nz

From: Marlene Roberts-Saidy [mailto:Marlene.Saidy@wellingtonwater.co.nz] On Behalf Of Land Development
Sent: Saturday, 31 July 2021 9:14 AM
To: Niamey Izzett
Cc: Peter McDonald; Sarah Zhou
Subject: [EXTERNAL] WW Pre-app Response - 758 - 760 High Street, Boulcott - PREAPP210175 - 30 July 2021

Good day Niamey, please see comments below .

My time on this was 2hrs 10mins.

With

Water Supply

- The model shows that minimum pressure at the point of supply on the public main is expected to be about 45-50m, which meets the level of service criteria for pressure. The model also indicates that available fire flow capacity from the existing hydrant(s) is expected to be compliant with the NZ Fire code for residential areas (FW2). However, considering the building and their usage, it is recommended that a hydrant flow test is carried out and the compliance with the NZ Fire code requirements are approved by a fire engineer.
- This modelling assessment only represents the existing network based on WWL hydraulic model developed in 2019. The analysis takes no account of developments

that have occurred since then, currently underway, or future developments. Nonhydraulic parameters like pipe age, conditions and likelihood of their failure have not been assessed. Please also note the above are just the result of WWL hydraulic model which could be impacted by day-to-day operational changes within the network and may need to be verified in the field through pressure logging and hydrant flow tests.

• The applicant will need to assess the water supply lateral and if not constructed of MDPE will need to change these to MDPE.

Wastewater

• The property could be connected to the local network at High St, between manhole 710128R00173 and 710293R00173, and alternatively towards Dyer St, between manholes 710011R00421 and 710009R00421.

LOCAL and TRUNK NETWORK (pipes 300mm dia and above) – High St.

- The property is proposed to be connected to the local network between manholes 710128R00173 and 710121R00173. This system discharges into the trunk network at manhole 710005R00428. There appears to be no spare capacity in the local network during a 1-year LTS design event. Furthermore, this part of the network is heavily surcharged.
- The trunk network downstream of manhole 710005R00428 discharges into the Barber Grove pump station. A significant portion of the trunk network appears to already over capacity (i.e. no spare capacity) in a 1-year flow. There are two engineered overflows at the pump station at the incoming main and the rising main. They both discharge to the Hutt River. At present it is not clear from the model results as to whether they operate and the frequency. Further development of this property will exacerbate this.

LOCAL and TRUNK NETWORK (pipes 300mm dia and above) – Dyer St.

- The property is alternatively proposed to be connected to the local network between manholes 710011R00421 and 710009R00421. This system discharges into the trunk network at manhole 710009R00421. There appears to be at least 5 litres/sec of spare capacity in the local network during a 1-year LTS design event
- The trunk network downstream of manhole 710009R00421 discharges into the Barber Grove pump station. A significant portion of the trunk network appears to already over capacity (i.e. no spare capacity) in a 1-year flow. There are two engineered overflows at the pump station at the incoming main and the rising main. They both discharge to the Hutt River. At present it is not clear from the model results as to whether they operate and the frequency. Further development of this property will exacerbate this.

Summary

• While only the local network towards Dyer St. appears to have at least 5 litres/sec spare capacity during a 1-year LTS design flow, there appears to be no spare capacity (with overflows occurring into the Hutt River) in the trunk network for further development of this property. The first proposal of connecting to the local network at High St, shows that the local network has no spare capacity as well during the 1-year LTS design event.

As the site is a redevelopment in order to understand the impact on the network we would need to understand the pre and post development flows.

This assessment is based on the results from WWL hydraulic models as defined in this memorandum. It does not take into account the impact on the spare design capacity of other developments that have occurred since then, are currently underway, or possible future developments Non-hydraulic parameters like pipe age, conditions and likelihood of their failure have not been assessed. Flow monitoring may be required to verify these results. This development may impact on the spare design capacity available for possible future developments along the downstream network.

 From the info, the site is for re-development – it is assumed that the structure will stay as is with only possible reconfiguration. If this is the case the existing laterals could be reused however the applicant will need to reassess these and ensure they are in good condition and of capacity to convey the flow.

Stormwater

DISCLAIMER

Hazard Classification and Flood Depth data is derived from Wellington Water models. Mapped flooding information may not be survey-<u>accurate</u>, and is bound by the model assumptions and limitations. Care should be taken that information is verified as part of any flood risk analysis, concept or detail design

FLOODING RESULTS	
Software	InfeWerks ICM
Model	Waiwhetu
Model Status	Validated
Flood Scenario	100 year ARI + Climate Change (assuming 2.1 C temperature increase)
Sea Water Level	2.1 m aMSL

RECOMMENDATIONS	
Minimum Floor Level	Minimum floor level should be set based on the building code.
(including 200 mm	
Freeboard)	
	N/A
Overland Flow	

Thanks

Marlene

From: Niamey Izzett <Niamey.Izzett@huttcity.govt.nz>
Sent: Tuesday, 20 July 2021 8:28 am
To: Land Development <Land.Development@wellingtonwater.co.nz>
Subject: 758 - 760 High Street, Boulcott - PREAPP210175

Hi there,

An applicant is proposing a redevelopment of the existing retirement village at 758-760 High Street. The proposed yield is 49 apartments.

Please provide any comment you may have on three water infrastructure and flooding issues.

Kind regards,

Niamey Izzett

Resource Consents Planner

Hutt City Council, 30 Laings Road, 5040, Lower Hutt 5040, New Zealand

T 04 570 6666, W www.huttcity.govt.nz

APPENDIX C: AWA DESIGN CALCULATIONS

THREE WATERS CALCULATIONS

SEWER

The proposed development will result in additional sewer loading. Table 1 compares the existing sewer load of the site to the loading as per the proposed development.

The Wellington Water Standards indicate that the sewer flows are calculated based on an occupancy per dwelling basis. Following the guidance for Lower Hutt, a occupancy of 3.5 is assumed per dwelling.

The site currently has 20 units and a 4-bedroom house.

Q_{ADWF}= 21 x 3.5 x 0.0023= 0.169 L/sec

 $PF = 7.23 \text{ x Area}^{-0.2} = 8.67$

PDWF = ADWF x PF = 1.47 L/sec

Proposed Development has 50 lots and a café area of 93.32 m² (0.0093 ha). (Area = Café + Kitchen + Toilets)

From Wellington Water Standards Section 5.3.1:

(Dwellings) (Café)

Q_{ADWF}= (50 x 3.5 x 0.0023) + (0.52 x 0.0093)= 0.407 L/s

 $PF = 7.23 \text{ x} \text{ Area}^{-0.2} = (Assuming \text{ Area is for the area of the property Area} = 0.403 \text{ ha})$

PF= 7.23 x 0.403^{-0.2}= 8.67

PDWF= PF x Q_{ADWF (Res})+ 1.56 x A_{café}=

PDWF= 8.67 x 50 x 3.5 x 0.0023 + 1.56 x 0.0093 = 3.5 L/sec

Assuming a sewer pipe network length of 150 m within the development for calculation of infiltration flow. Q_{lnf} =0.15 x 0.55= 0.0825 L/sec. This applies to both cases.

Table 1: Sewer Flow for development using Wellington Water Standard (Dec 2021)

HEADING	PREDEVELOPMENT	POST DEVELOPMENT
ADWF	0.169 L/sec	0.407 L/sec
PF	8.67	8.67
PDWF	1.47 L/sec	3.5 L/sec
Pipe Length	(150m Estimate)	(150 m Estimate)
PWWF	1.55 L/sec	3.58 L/sec

Café Sewer Loading

Using the TP 58 Guidance on sewer design, the sewer loading from the café is defined (wet Retail) as 15 L/m^2 . As the area of the café and dining area is 82 m² the Flow from the Café is Q= 1220.4 L/day. This corresponds to a ADWF_(café) =0.014 L/sec with a PDWF_(café) = 0.028 L/sec

STORMWATER

The development will need to be hydraulically neutral. Comparing the areas of Hardstand and roofing in both the predevelopment and post development scenarios is necessary. See Table 2 for a comparison.

The development is expected to have a time of concentration of less then 20 min. This has been estimated using Figures 1, 2 and 3 of the New Zealand Building Code E1.

HEADING	C VALUE	PREDEVELOPMENT AREA	POST DEVELOPMENT AREA
Roof Area	0.9	1303 m²	1884 m²
Concrete area	0.85	1602 m²	1177 m²
Garden	0.25	1425 m²	969 m²
Additional Runoff 1% AEP 20 min		-	1.462 m³
Additional Runoff 10% AEP 20 min		-	0.936 m³

Table 2: Area of Impermeable surface post development.

There is minimal increase in impermeable area with the development as currently proposed. As such the required detention for the 1% and 10% AEP storms is also minimal. However, this assumes a 20 min storm duration. For the size of the site, it is recommended that a longer duration storm is considered.

Note that the additional detention volume required for the development is in addition to any existing detention and stormwater management devices.

✤ WATER

Flow Requirements

The expected residential population of the development is calculated using Clause 5.3.1.2 from the Sewer section of the Wellington Water Standards (Dec 2021). The development is expected to have 50 apartments, plus the water demand from the café (fire demand is discussed in the next section).

Using the guidance in the Wellington water documentation, the residential section of the village is expected to have a population of 3.5 people per dwelling (this is likely more than what would actually be present due to the nature of the occupancy. But there is no reason not to design for this village becoming a regular apartment complex in the future)

 $Q_{peak res}$ = 3.5 x 50 x 0.0162 = 2.835 L/s.

The calculation for the water demand for the café is not clearly defined in the Wellington Water Standards. As **such we** have used the Auckland Standard to size the flow volumes. This can be located in <u>cop_water_chapter.pdf (windows.net)</u> Clause 6.3.5.6. This states a daily water use of 15 L/m². With a café and kitchen area of 82 m² This corresponds to a flow of 1230 L/day, or 0.014 L/sec.

 $Q_{ave cafe}$ = 82 x 15 /(24 x 60 x 60) = 0.0142 L/sec.

For the purpose of assessing a peak flow demand for the Café, a peaking factor of 6 has been used. This is due to the café likely operating for 8 hours a day, plus an additional factor of 2 for safety (though it is noted that due to the café and residential demand being taken from the same line, and that they both will have peak demand at different times, it is unlikely that the peaking of the café demand is important.)

 $Q_{\text{peak cafe}} = Q_{\text{ave cafe}} \times 6 = 0.0852 \text{ L/sec.}$

Therefore, a peak water demand for the development is expected to be 2.92 L/sec

 $Q_{peak} = Q_{peak res} + Q_{peak cafe} = 2.92 L/sec.$

Using the simple headless calculation excel sheet shows that for the entire ring main a DN 63 mm 12.5 PE100 water pipe will suit the requirements of the site. This pipe will result in a head loss of 6.16 m. As the pressure head being supplied to the site is between 40 and 50 m, the pressure provided to the apartments and café is expected to be good.

The site itself is at a lower elevation than the hydrant where the pressure test was carried out. The ground level at the boundary of the village is 11.35 m RL, which is 0.008 m lower than the ground level at the furthest part of the internal potable water ring main (11.358 m RL). This is not significant, and can hence be ignored. Hence the Net headloss from friction losses is 6.16 m (this does not account for the specific head losses due to fittings and joins, but total headloss is not expected to be more than 10 m which will still provide ample pressure to the development)

> Fire Hydrants

According to the fire code SNZ PAS 4509 the development will need to have sufficient fire fighting flow. From Table 1, it is assumed that that the development has a water supply classification FW4. Though this is deponent on the largest fire cell in the development. (Hazard category FHC 1). This requires 50 L/s flow from within 135m, and another 50L within 270 m.

Water pressure testing of the hydrant on 2 Lincoln Ave/776 High Street can provide a flow of 44 L/sec at a pressure of 540 kPa.

 Title:	Winsor Management	Job No.	J000502
	Ropata Village	Page No.	1
Description:	Water Supply - Internal	Date	14/02/2022
	Ring Main	Author:	WDU
		Reviewer:	PR
		Revision:	

12.5 PE100

R

Using the Darcy-Weisbach calculation, utilising the Swamee-Jain method

$$= \frac{V * D}{10^{-6}} \qquad f = \frac{0.25}{\left[log_{10} \left(\frac{E/D}{3.7} + \frac{5.74}{R^{0.9}} \right) \right]^2} \qquad h_f = f \frac{L}{D} \frac{V^2}{2g}$$

			Pipe 1:	
Flow	Q	=	2.92L/s	
Pipe Diameter	D	=	53mm	DN 63 mm
Pipe Roughness	3	=	0.15	
Length of pipe	L	=	135.0m	
Velocity	V	=	1.31m/s	
Reynolds No.	R	=	69753	
Friction Factor	f	=	0.028	
Headloss	h _f	=	6.16m	
Change in			44.05	
Change in	05	=	11.35	m
Ground level	DS	=	11.358	m
		=	-0.008	m

	(!	Age of pipe see notes belov	v)
Material	< 10 years*	10-25 years*	> 25 years*
Asbestos Cement (AC)	0.03	0.06	0.5
PVC / Polyethylene	0.06	0.06	0.15
Clay/earthenware	0.06	0.15	0.15
Cast iron	0.3	0.6	3
Concrete lined ductile iron (DICL)	0.06	0.15	0.15
Concrete lined steel (STCL)	0.06	0.15	0.15
Copper (Cu)	0.03	0.06	0.5
Ductile iron (unlined)	0.045	0.06	3
Galvanised iron (GI)	0.3	0.6	3.0
Steel (unlined)	0.03	0.06	3
Reinforced concrete (RC)	0.15	0.6	3
Unknown	0.03	0.06	0.5

*These factors should only be used for the simulation and calibration of existing networks and pipelines. They shall NOT be used for the design of new pipelines.

*For the design of new/replacement pipelines, roughness factors for pipes >25 years shall be used to ensure network performance can be maintained throughout the lifespan of the pipeline/network.

Table 7.3 – Colebrook-White Pipe Roughness (mm)

	_			Title:	Winse	or Management	Job No.	J000502
					Ro	opata Village	Page No.	1
		Л	De	escription:	Water	Supply - Internal	Date	14/02/2022
						Fire supply	Author:	WDU
							Reviewer:	PR
							Revision:	
Using the Darcy-W utilising the Swame	/eisba ee-Ja	ach (in m	calculation, nethod	$R = \frac{V * D}{10^{-6}}$	$f = \frac{1}{\left[log_{10} \right]}$	$\frac{0.25}{\left(\frac{\varepsilon}{3.7} + \frac{5.74}{R^{0.9}}\right)\right]^2}$	$h_f = f \frac{L}{D} \frac{V^2}{2g}$	
			<u>Pipe 1:</u>					
Flow Pipe Diameter Pipe Roughness	Q D 3	= = =	20.83L/s 90mm 0.15 70.0m	DN 63 mm	12.5 PE100			
Length of pipe Velocity	L V	=	70.0m 3.27m/s		Sprinkler Flow	8.33 L/sec	(assumed)	
Reynolds No. Friction Factor	R f	=	294684 0.023		Fire Flow = (internal Hydran	12.5 L/sec t)		
Headloss	h _f	=	9.85m					
Elevation Change	US	=	11.35	m				
	DS	=	11.7	m				
			-0.35	m		Table 7.3 – Cole	brook-White Pipe Roughness (mn	n)
Headloss Total	h_{Tf}	=	10.20	m			Age of pip	e

	(!	Age of pipe see notes belov	v)
Material	< 10 years*	10-25 years*	> 25 years*
Asbestos Cement (AC)	0.03	0.06	0.5
PVC / Polyethylene	0.06	0.06	0.15
Clay/earthenware	0.06	0.15	0.15
Cast iron	0.3	0.6	3
Concrete lined ductile iron (DICL)	0.06	0.15	0.15
Concrete lined steel (STCL)	0.06	0.15	0.15
Copper (Cu)	0.03	0.06	0.5
Ductile iron (unlined)	0.045	0.06	3
Galvanised iron (GI)	0.3	0.6	3.0
Steel (unlined)	0.03	0.06	3
Reinforced concrete (RC)	0.15	0.6	3
Unknown	0.03	0.06	0.5

*These factors should only be used for the simulation and calibration of existing networks and pipelines. They shall NOT be used for the design of new pipelines.

*For the design of new/replacement pipelines, roughness factors for pipes >25 years shall be used to ensure network performance can be maintained throughout the lifespan of the pipeline/network.

			Title:		Windsor Man	agement		Job No.	J000502
					Ropata V	illage		Page No	1
			Description:		•	0		Data	
			Description.		Ctorresultor F) oto ati o a		Date	
			-		Stormwater L	Detention		Author:	WDU
			-					Reviewer:	PR
								Revision:	
Surface Run	<u>Off</u>	Catchment	Runoff				Catchment	Runoff	Effective
Pre-develop	nent	Area:	Coefficient:	Effective Area:	Post-develo	oment	Area:	Coefficient:	Area:
Roof		1,303m ²	0.90	1,173m ²	Roof		1,884m ²	0.90	1,696m ²
Paved Areas		1.602m ²	0.85	1.362m ²	Paved Areas		1.177m ²	0.85	1.000m ²
Berm / Garder	n	1.425m ²	0.25	356m ²	Berm / Garde	en	, 969m²	0.25	242m ²
Deck area		0m ²	0.3	0m ²	Deck		0m ²	0.3	0m ²
Permeable Pa	avement	0m²	0.5	0m ²	Perm Pavem	ont	0m ²	0.5	0m ²
i enneable i a	wennent	UII	Total:	2 891m ²	i enni aveni	ent	UIII	Total:	2 Q38m2
Evoluciono		kaga Tranah	Total.	Sock Heleor			Subtract Dra		Z,300m
Exclusions	<u>508</u>	kage Trench:	Niumahaw	SOAK HOLES:	0		Subtract Pre-	Development?	
	ench width =	0.00m	Number	of Soakholes =	0		Return Period:		
lr _	ench Depth =	0.00m	F	Ring Diameter =	0mm		r enou.	ZU y	Bassalar
Tre	ench Length =	0.00m		Depth =	0.00m		Duration:	Match Post	-Develop.
Ne	t Void Ratio =	0	Ν	let Void Ratio =	0.00			6(+
Trei	nch Volume =	0.0m ³	Sc	akhole Volume	0.0m ³				
V	oid Volume =	0.0m ³		Void Volume	0.0m ³		<u> </u>	Additional Volur	ne Exclusion:
Infiltration I	Rate per m ² =	0.00m/h	Infiltration	n Rate per m ² =	0.00m/h			Volume =	0.0m ³
Soakage T	hrough Base:	Yes	Soakage	Through Base:	Yes				Description
Soakage Th	nrough Sides:	Yes	Soakage	Through Sides:	Yes			Additional Flo	ow Exclusion:
Side S	Soak Factor =	0.50	Side	e Soak Factor =	0.00			Flow =	0.0l/s
Total Infil	tration Rate =	0.0l/s	Total In	filtration Rate =	0.0l/s				Description
Rainfall Inten	alter Datas	01 D -	turn Dariad		a al Duna (i a a O				
	ISITV Data:	Storm Re	1000000000000000000000000000000000000	Use Criti	cal Duration?	NO	Climate C	Change Factor:	20%
	isity Data:	Storm Re	100 Years	Const	cal Duration?	NO 20min	Climate C	hange Factor: Zone Factor:	20% 1.0
Source : HIRDS	<u>isity Data:</u>	Storm Re	100 Years	Const	ant Duration?	NO 20min	Climate C	Change Factor: Zone Factor:	20% 1.0 Units : mm/h
Source : HIRDS Return Period	10min	20min	100 Years	60min	cal Duration?	20min 360min	Climate C	Change Factor: Zone Factor: 1440min 24.0br	20% 1.0 Units : mm/h 2880min 48.0br
Source : HIRDS Return Period Years 2	10min 0.2hr 56.64	20min 0.3hr 38.04	30min 0.5hr 30.48	60min 1.0hr 21.12	cal Duration? cant Duration: 120min 2.0hr 14.76	NO 20min 360min 6.0hr 8.32	Climate C 720min 12.0hr 5.68	Change Factor: Zone Factor: 1440min 24.0hr 3.79	20% 1.0 Units : mm/h 2880min 48.0hr 2.45
Source : HIRDS Return Period Years 2 5	10min 0.2hr 56.64 74.52	20min 0.3hr 38.04 49.92	30min 0.5hr 30.48 39.96	60min 1.0hr 21.12 27.60	cal Duration? cant Duration: 120min 2.0hr 14.76 19.20	NO 20min 360min 6.0hr 8.32 10.75	Climate C 720min 12.0hr 5.68 7.33	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13
Source : HIRDS Return Period Years 2 5 10	10min 0.2hr 56.64 74.52 88.20	20min 0.3hr 38.04 49.92 58.92	30min 0.5hr 30.48 39.96 47.04	60min 1.0hr 21.12 27.60 32.40	cal Duration? cant Duration: 120min 2.0hr 14.76 19.20 22.56 20.64	No 20min 360min 6.0hr 8.32 10.75 12.60	720min 12.0hr 5.68 7.33 8.54	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64
Source : HIRDS Return Period Years 2 5 10 20 50	10min 0.2hr 56.64 74.52 88.20 102.48 122.40	20min 0.3hr 38.04 49.92 58.92 68.40 81.60	30min 0.5hr 30.48 39.96 47.04 54.48 64.92	60min 1.0hr 21.12 27.60 32.40 37.56 44.52	cal Duration? ant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87
Source : HIRDS Return Period Years 2 5 10 20 50 100	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developn	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows:	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min	car Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 30.84 34.56 120min	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developn	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 5.5
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developn 2 5 10	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47 31	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6 86	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developn 2 5 10 20 20	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16	car Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 5 5 10 20 5 5	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 20 50 100	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 ment Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28	cal Duration ? ant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Pre-developm 0 50 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows:	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28	car Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developn 2 5 10 20 50 100 Pre-developn 2 50 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 ment Flows: 10min 10min	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 24.05	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.92	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 42.05	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.70	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 2.40	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Pre-developm 2 50 100 Post-developm 2 5	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows: 10min 46.23 60.82	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74	30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Pre-developm 2 5 100 20 50 100 Pre-developm 2 50 100 Pre-developm 2 100 20 50 100 Pre-developm 2 100 20 50 100 20 100 20 20 20 20 20 20 20 20 20 20 20 20 2	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows: 10min 46.23 60.82 71.99	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Post-develop 2 5 100 20 50 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows: 10min 46.23 60.82 71.99 83.64	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66	cal Duration ? ant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developn 2 5 10 20 50 100 Pre-developn 2 5 10 20 50 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows: 10min 46.23 60.82 71.99 83.64 99.90	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83 66.60	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47 52.99 44.47	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66 36.34	cal Duration ? ant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25 25.17 24.76	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85 13.91	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01 9.42	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30 6.23 6.21	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40 3.98
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 ment Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 ment Flows: 10min 46.23 60.82 71.99 83.64 99.90 113.61	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83 66.60 75.12	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47 52.99 59.75	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66 36.34 40.94	cal Duration ? ant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25 25.17 28.21	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85 13.91 15.57	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01 9.42 10.58	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30 6.23 6.94	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40 3.98 4.43
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows: 10min 46.23 60.82 71.99 83.64 99.90 113.61 V Volume Ger	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83 66.60 75.12 Derated by De	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47 52.99 59.75 Evelopment:	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66 36.34 40.94 60min	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25 25.17 28.21 120min	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85 13.91 15.57 360min	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01 9.42 10.58	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30 6.23 6.94	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40 3.98 4.43 Units : m ³ 2890min
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Post-develop 2 5 100 Post-develop 2 5 100 Post-develop 3 5 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows: 10min 46.23 60.82 71.99 83.64 99.90 113.61 V Volume Ger 10min 0.450	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83 66.60 75.12 nerated by De 20min 0.604	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47 52.99 59.75 Evelopment: 30min 0.726	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66 36.34 40.94 60min 1.006	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25 25.17 28.21 120min 1.407	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85 13.91 15.57 360min 2.378	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01 9.42 10.58 720min 3.246	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30 6.23 6.94 1440min 4.337	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40 3.98 4.43 Units : m ³ 2880min 5.599
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Pre-develop 100 Pre-develop 100 Post-develop 100 Post-develop 100 20 50 100 Pre-develop 100 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Pre-develop 10 20 50 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows: 10min 46.23 60.82 71.99 83.64 99.90 113.61 V Volume Ger 10min 0.450 0.592	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83 66.60 75.12 nerated by De 20min 0.604 0.793	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47 52.99 59.75 Evelopment: 30min 0.726 0.952	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66 36.34 40.94 60min 1.006 1.315	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25 25.17 28.21 120min 1.407 1.830	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85 13.91 15.57 360min 2.378 3.074	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01 9.42 10.58 720min 3.246 4.192	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30 6.23 6.94 1440min 4.337 5.572	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40 3.98 4.43 Units : m ³ 2880min 5.599 7.164
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 20 50 100 Pre-develop 100 20 50 100 Pre-develop 100 20 50 100 Pre-develop 100 20 50 100 Post-develop 100 20 50 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows: 10min 46.23 60.82 71.99 83.64 99.90 113.61 V Volume Ger 10min 0.450 0.592 0.700	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83 66.60 75.12 Derated by De 20min 0.604 0.793 0.936	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47 52.99 59.75 Evelopment: 30min 0.726 0.952 1.121	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66 36.34 40.94 60min 1.006 1.315 1.544 4.52	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25 25.17 28.21 120min 1.407 1.830 2.150	NO 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85 13.91 15.57 360min 2.378 3.074 3.602	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01 9.42 10.58 720min 3.246 4.192 4.885	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30 6.23 6.94 1440min 4.337 5.572 6.491	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40 3.98 4.43 Units : m ³ 2880min 5.599 7.164 8.316
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Post-develop 100 Post-develop 2 5 10 20 50 100 Pre-develop 100 20 50 100 Pre-develop 100 20 50 100 Pre-develop 100 20 50 100 Pre-develop 100 20 50 100 Pre-develop 100 20 50 100 Pre-develop 100 20 50 100 Pre-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows: 10min 46.23 60.82 71.99 83.64 99.90 113.61 M Volume Ger 10min 0.450 0.592 0.700 0.814 0.972	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83 66.60 75.12 Derated by De 20min 0.604 0.793 0.936 1.086 1.296	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47 52.99 59.75 Evelopment: 30min 0.726 0.952 1.121 1.298 1.547	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66 36.34 40.94 60min 1.006 1.315 1.544 1.790 2.121	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25 25.17 28.21 120min 1.407 1.830 2.150 2.482 2.920	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85 13.91 15.57 360min 2.378 3.074 3.602 4.151 4.972	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01 9.42 10.58 720min 3.246 4.192 4.885 5.613 6.601	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30 6.23 6.94 1440min 4.337 5.572 6.491 7.424 8.728	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40 3.98 4.43 Units : m ³ 2880min 5.599 7.164 8.316 9.524 11 142
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Pre-develop 100 Post-develop 100 Post-develop 100 Post-develop 100 20 50 100 Pre-develop 100 20 50 100 Pre-develop 100 20 50 100 Pre-develop 100 Pre-develop 100 Post-develop 100 Post-develop 100 Post-develop	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 ment Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 ment Flows: 10min 46.23 60.82 71.99 83.64 99.90 113.61 V Volume Gen 10min 0.450 0.592 0.700 0.814 0.972 1.105	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83 66.60 75.12 Derated by De 20min 0.604 0.793 0.936 1.086 1.296 1.462	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47 52.99 59.75 Evelopment: 30min 0.726 0.952 1.121 1.298 1.547 1.744	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66 36.34 40.94 60min 1.006 1.315 1.544 1.790 2.121 2.390	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25 25.17 28.21 120min 1.407 1.830 2.150 2.482 2.939 3.294	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85 13.91 15.57 360min 2.378 3.074 3.602 4.151 4.872 5.455	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01 9.42 10.58 720min 3.246 4.192 4.885 5.613 6.601 7.411	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30 6.23 6.94 1440min 4.337 5.572 6.491 7.424 8.728 9.730	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40 3.98 4.43 Units : m ³ 2880min 5.599 7.164 8.316 9.524 11.143 12.406
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Post-develop 2 5 10 20 50 100 Post-develop 100 Additional SV 2 5 10 20 50 100	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 ment Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 ment Flows: 10min 46.23 60.82 71.99 83.64 99.90 113.61 V Volume Gen 10min 0.450 0.592 0.700 0.814 0.972 1.105	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83 66.60 75.12 nerated by De 20min 0.604 0.793 0.936 1.086 1.296 1.462 e numbers refer	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47 52.99 59.75 Evelopment: 30min 0.726 0.952 1.121 1.298 1.547 1.744 to additional vot	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66 36.34 40.94 60min 1.006 1.315 1.544 1.790 2.121 2.390	Cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25 25.17 28.21 120min 1.407 1.830 2.150 2.482 2.939 3.294 egative numbers	NO 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85 13.91 15.57 360min 2.378 3.074 3.602 4.151 4.872 5.455	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01 9.42 10.58 720min 3.246 4.192 4.885 5.613 6.601 7.411 cient mitigation.	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30 6.23 6.94 1440min 4.337 5.572 6.491 7.424 8.728 9.730 Farget a small ne	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40 3.98 4.43 Units : m ³ 2880min 5.599 7.164 8.316 9.524 11.143 12.406 gative number.
Source : HIRDS Return Period Years 2 5 10 20 50 100 Pre-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 100 Post-developm 2 5 100 20 50 100 Post-developm 2 5 100 20 50 100 Post-developm 2 5 100 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 10 20 50 100 Post-developm 2 5 100 20 50 100 Post-developm 2 5 100 20 50 100 Post-developm 2 5 100 2 5 100 2 5 100 2 5 100 2 5 100 100 100 100 100 100 100	10min 0.2hr 56.64 74.52 88.20 102.48 122.40 139.20 nent Flows: 10min 45.48 59.84 70.82 82.29 98.28 111.77 oment Flows: 10min 46.23 60.82 71.99 83.64 99.90 113.61 W Volume Ger 10min 0.450 0.592 0.700 0.814 0.972 1.105 Positiv Return	20min 0.3hr 38.04 49.92 58.92 68.40 81.60 92.04 20min 30.54 40.08 47.31 54.92 65.52 73.90 20min 31.05 40.74 48.09 55.83 66.60 75.12 Derated by De 20min 0.604 0.793 0.936 1.086 1.296 1.462 e numbers refer	100 Years 30min 0.5hr 30.48 39.96 47.04 54.48 64.92 73.20 30min 24.47 32.09 37.77 43.75 52.13 58.78 30min 24.88 32.62 38.39 44.47 52.99 59.75 Evelopment: 30min 0.726 0.952 1.121 1.298 1.547 1.744 to additional volume	60min 1.0hr 21.12 27.60 32.40 37.56 44.52 50.16 60min 16.96 22.16 26.02 30.16 35.75 40.28 60min 17.24 22.53 26.44 30.66 36.34 40.94 60min 1.006 1.315 1.544 1.790 2.121 2.390 Jume generated, n	cal Duration ? cant Duration: 120min 2.0hr 14.76 19.20 22.56 26.04 30.84 34.56 120min 11.85 15.42 18.11 20.91 24.76 27.75 120min 12.05 15.67 18.41 21.25 25.17 28.21 120min 1.407 1.830 2.150 2.482 2.939 3.294 egative numbers Sufficient?	No 20min 360min 6.0hr 8.32 10.75 12.60 14.52 17.04 19.08 360min 6.68 8.63 10.12 11.66 13.68 15.32 360min 6.79 8.78 10.28 11.85 13.91 15.57 360min 2.378 3.074 3.602 4.151 4.872 5.455 indicate suffic	Climate C 720min 12.0hr 5.68 7.33 8.54 9.82 11.54 12.96 720min 4.56 5.89 6.86 7.88 9.27 10.41 720min 4.63 5.98 6.97 8.01 9.42 10.58 720min 3.246 4.192 4.885 5.613 6.601 7.411 cient mitigation.	Change Factor: Zone Factor: 1440min 24.0hr 3.79 4.87 5.68 6.49 7.63 8.51 1440min 3.04 3.91 4.56 5.21 6.13 6.83 1440min 3.10 3.98 4.63 5.30 6.23 6.94 1440min 4.337 5.572 6.491 7.424 8.728 9.730 Farget a small ne onal Storage	20% 1.0 Units : mm/h 2880min 48.0hr 2.45 3.13 3.64 4.16 4.87 5.42 Units : I/s 2880min 1.97 2.51 2.92 3.34 3.91 4.36 Units : I/s 2880min 2.00 2.56 2.97 3.40 3.98 4.43 Units : m ³ 2880min 5.599 7.164 8.316 9.524 11.143 12.406 gative number.

Title	Winsor Management	Job No.	J000502
	Ropata Village	Page No.	1
Description:		Date	
	Stormwater Pipes	Author:	
		Reviewer:	
		Revision:	

Rainfall Intensity Data: Units : mm/h Source: Regional Code of Practice 2012

Return Period 10min 20min 30min 60min 120min 360min 720min 1440min 2880 0.2hr 0.3hr 0.5hr 1.0hr 2.0hr 6.0hr 12.0hr 24.0hr 48 2 54.75 36.77 29.46 20.42 14.27 8.04 5.49 3.67 5 72.04 48.26 38.63 26.68 18.56 10.39 7.09 4.71	
Return Period 10min 20min 30min 60min 120min 360min 720min 1440min 2880 0.2hr 0.3hr 0.5hr 1.0hr 2.0hr 6.0hr 12.0hr 24.0hr 48 2 54.75 36.77 29.46 20.42 14.27 8.04 5.49 3.67 5 72.04 48.26 38.63 26.68 18.56 10.39 7.09 4.71	
0.2hr 0.3hr 0.5hr 1.0hr 2.0hr 6.0hr 12.0hr 24.0hr 48 2 54.75 36.77 29.46 20.42 14.27 8.04 5.49 3.67 5 72.04 48.26 38.63 26.68 18.56 10.39 7.09 4.71	0min
2 54.75 36.77 29.46 20.42 14.27 8.04 5.49 3.67 5 72.04 48.26 38.63 26.68 18.56 10.39 7.09 4.71	8.0hr
5 72.04 48.26 38.63 26.68 18.56 10.39 7.09 4.71	2.37
	3.03
10 85.26 56.96 45.47 31.32 21.81 12.18 8.26 5.49	3.51
20 99.06 66.12 52.66 36.31 25.17 14.04 9.49 6.28	4.03
50 118.32 78.88 62.76 43.04 29.81 16.47 11.16 7.38	4.71
100 134.56 88.97 70.76 48.49 33.41 18.44 12.53 8.22	5.24

Pipe Flow Method:

1 - Mannings with Constant n

2 - Mannings with Variable n

3 - Mannings with Escritt's Hydraulic Radius

Calculations taken from 'Simple Formulae for Velocity, Depth of Flow, and Slope Calculations in Partially Filled Circular Pipes', Omer Akgiray, Published November 3 2004 in Environmental Engineering Science

1

Velocity Criterea:

0.75m/s	Min. Velocity
3.00m/s	Max. Velocity
2 years	Min. Velocity Return Period:
0.5	Min. Velocity Intensity Multiplication Factor:

Zone Multiplier Adjustment:

Climage Change Adjustment:

1.0

16%

Catchment	Lippor Nodo	Lower Nede	Catchr	nent Sump1-	Internal Sout	<u>h line</u>	Upstream C	ontributions	Effective A	Area
Sump1-	Opper Node	Lower Node	Description	Aree	Runoff	Effective	Catabraant	Effective	Catchme	nt:
Internal	Sump1	rnal South line	Description	Alea	Coefficient	Area	Catchinent	Area	1	56m²
Slope	Diameter	Manning's n	Berm	0m²	0.25	0m²			Upstrear	m:
0.50%	150mm	0.013	Road	183m²	0.85	156m ²				0m²
Return Period	Time of co	ncentration				0m²			Total:	
10 years	10	min				0m²			1	56m²
	Rainfall	Flow	Volocity	Area of	Water	Air/Water	Flow (with	Porcont		
	Intensity	TIOW	velocity	Flow	Depth	Ratio	Air Entrap.)	Fercent	31%	
Min Vel. Flow	27.38mm/h	1.18L/s	0.41m/s	0.00m ²	35mm	-	1.18L/s	Full.		
Design Flow	85.26mm/h	3.68L/s	0.55m/s	0.01m ²	60mm	-	3.68L/s	Capacity?	Okay	
Max. Capac.	-	11.98L/s	0.69m/s	0.02m ²	142mm	0.005	11.92L/s	Velocity?	Warning	

Catchment	Lippor Nodo	Lower Nede	Cato	hment SWN	IH 15-SWMH	12	Upstream C	ontributions	Effective A	rea
SWMH 15-	Opper Node	Lower Node	Description	Aree	Runoff	Effective	Catabraant	Effective	Catchmer	nt:
SWMH 12	SWMH 15	SWMH 12	Description	Area	Coefficient	Area	Catchment	Area	44	18m²
Slope	Diameter	Manning's n	Garden	73m ²	0.25	18m²			Upstream	n:
0.50%	150mm	0.013	Pavement	173m ²	0.85	147m²				0m²
Return Period	Time of co	ncentration	Roof	274m²	0.95	260m ²			Total:	
10 years	10min		deck 89m ² 0.25 22m ²				44	18m²		
	Rainfall	Flow	Volocity	Area of	Water	Air/Water	Flow (with	Porcont		
	Intensity	FIOW	velocity	Flow	Depth	Ratio	Air Entrap.)	Fercent	89%	
Min Vel. Flow	27.38mm/h	3.41L/s	0.54m/s	0.01m ²	58mm	-	3.41L/s	i un.		
Design Flow	85.26mm/h	10.61L/s	0.69m/s	0.02m ²	120mm	-	10.61L/s	Capacity?	Okay	
Max. Capac.	-	11.98L/s	0.69m/s	0.02m ²	142mm	0.005	11.92L/s	Velocity?	Warning	

C:\Users\Warren Uys\Dropbox (Awa Environmental)\Clients\One-off Clients\Windsor Management\J000502 Ropata Village\3_Working\Calculations\Ropata Stormwater Pipe Sizing.xlsx

Catchment	Lippor Nodo	Lower Nede	Catchment SWMH 04-SWMH 02				Upstream C	ontributions	Effective A	rea
SWMH 04-	Opper Node	Lower Node	Description	Aroo	Runoff	Effective	Cotobmont	Effective	Catchme	nt:
SWMH 02	SWMH 04	SWMH 02	Description	Alea	Coefficient	Area	Catchinent	Area	8	15m²
Slope	Diameter	Manning's n	Berm	290m ²	0.25	73m²			Upstrear	n:
0.50%	225mm	0.013	Pavement	132m ²	0.85	112m ²				0m²
Return Period	Time of co	ncentration	Roof	456m ²	0.95	433m ²			Total:	
10 years	10r	nin	Driveway	232m²	0.85	197m ²			8	15m²
	Rainfall	Flow	Velocity	Area of	Water	Air/Water	Flow (with	Porcont		
	Intensity	11000	Velocity	Flow	Depth	Ratio	Air Entrap.)	Full	55%	
Min Vel. Flow	27.38mm/h	6.20L/s	0.63m/s	0.01m ²	68mm	-	6.20L/s	i un.		
Design Flow	85.26mm/h	19.30L/s	0.83m/s	0.02m ²	125mm	-	19.30L/s	Capacity?	Okay	
Max. Capac.	-	35.31L/s	0.91m/s	0.04m ²	212mm	0.005	35.13L/s	Velocity?	Warning	

Catchment	Lippor Nodo	Lower Nede	Cato	hment SWN	IH 02-SWMH	03	Upstream C	ontributions	Effective A	rea
SWMH 02-	Opper Node	Lower node	Description	A * 0.0	Runoff	Effective	Catabraant	Effective	Catchme	nt:
SWMH 03	SWMH 02	SWMH 03	Description	Area	Coefficient	Area	Catchment	Area	3	81m²
Slope	Diameter	Manning's n	Berm	176m ²	0.25	44m²			Upstrear	n:
0.50%	150mm	0.013	Pavement	73m ²	0.85	62m²				0m²
Return Period	Time of co	ncentration	Roof	289m²	0.95	275m ²			Total:	
10 years	10min		Driveway		0.85	0m²			3	81m²
	Rainfall	Flow	Volocity	Area of	Water	Air/Water	Flow (with	Boroont		
	Intensity	FIOW	velocity	Flow	Depth	Ratio	Air Entrap.)	Fercent	76%	
Min Vel. Flow	27.38mm/h	2.89L/s	0.52m/s	0.01m ²	53mm	-	2.89L/s	run.		
Design Flow	85.26mm/h	9.01L/s	0.67m/s	0.01m ²	104mm	-	9.01L/s	Capacity?	Okay	
Max. Capac.	-	11.98L/s	0.69m/s	0.02m ²	142mm	0.005	11.92L/s	Velocity?	Warning	

Catchment	Lipper Nede	Lower Nede	Cato	hment SWM	IH 07-SWMH	05	Upstream C	ontributions	Effective A	rea
SWMH 07-	Opper Node	Lower Node	Description	A roo	Runoff	Effective	Catabraat	Effective	Catchme	nt:
SWMH 05	SWMH 07	SWMH 05	Description	Alea	Coefficient	Area	Catchment	Area	6	53m²
Slope	Diameter	Manning's n	Berm	414m ²	0.25	104m²			Upstrear	n:
0.50%	225mm	0.013	Pavement	412m ²	0.85	350m²				0m²
Return Period	Time of co	ncentration	Roof	210m ²	0.95	200m ²			Total:	
10 years	10min				0.85	0m²			6	53m²
	Rainfall	Flow	Velocity	Area of	Water	Air/Water	Flow (with	Porcont		
	Intensity	TIOW	velocity	Flow	Depth	Ratio	Air Entrap.)	Fercent	44%	
Min Vel. Flow	27.38mm/h	4.97L/s	0.59m/s	0.01m ²	61mm	-	4.97L/s	r un.		
Design Flow	85.26mm/h	15.47L/s	0.79m/s	0.02m ²	109mm	-	15.47L/s	Capacity?	Okay	
Max. Capac.	-	35.31L/s	0.91m/s	0.04m ²	212mm	0.005	35.13L/s	Velocity?	Warning	

Catchment	Lippor Nodo	Lower Nede	Catc	hment SWM	IH 09-SWMH	<u>05</u>	Upstream C	ontributions	Effective Area	
SWMH 09-	Opper Node	Lower Node	Description	Aree	Runoff	Effective	Catabraant	Effective	Catchme	nt:
SWMH 05	SWMH 09	SWMH 05	Description	Area	Coefficient	Area	Catchment	Area	69	90m²
Slope	Diameter	Manning's n	Berm		0.25	0m²			Upstrear	n:
0.50%	225mm	0.013	Pavement	112m ²	0.85	95m²				0m²
Return Period	iod Time of concentration		Roof 626m ² 0.95 595m ²						Total:	
10 years	10min		0.8		0.85	0m²			69	90m²
	Rainfall	Flow	Velocity	Area of	Water	Air/Water	Flow (with	Porcont		
	Intensity	11000	velocity	Flow	Depth	Ratio	Air Entrap.)	Fercent	47%	
Min Vel. Flow	27.38mm/h	5.25L/s	0.60m/s	0.01m ²	63mm	-	5.25L/s	i un.		
Design Flow	85.26mm/h	85.26mm/h 16.34L/s 0.80m/s 0.02m ² 113m		113mm	-	16.34L/s	Capacity?	Okay		
Max. Capac.	-	35.31L/s	0.91m/s	0.04m ²	212mm	0.005	35.13L/s	Velocity?	Warning	

Catchment	Lippor Nodo	Lower Nede	Catch	nment SWM	H 02-EX SW	MH	Upstream Contributions		Effective A	rea
SWMH 02-EX	Opper Node	Lower Node	Departmention	Aroo	Runoff	Effective	Cotohmont	Effective	Catchme	nt:
SWMH	SWMH 02	EX SWMH	Description	Alea	Coefficient	Area	Catchinent	Area	2,7	66m²
Slope	Diameter	Manning's n	Roof	1,566m ²	0.95	1,488m²			Upstrear	n:
0.50%	300mm	0.013	Paved Areas	1,244m²	0.85	1,057m²				0m²
			Berm / Gard	777m²	0.25	194m²				
Return Period	Time of concentration		Deck	89m²	0.3	27m²			Total:	•
10 years	20r	min				0m²			2,7	66m²
	Rainfall	Flow	Volocity	Area of	Water	Air/Water	Flow (with	Boroont		
	Intensity	FIOW	velocity	Flow	Depth	Ratio	Air Entrap.)	Fercent	58%	
Min Vel. Flow	18.39mm/h	14.13L/s	0.77m/s	0.02m ²	94mm	-	14.13L/s	r un.		
Design Flow	56.96mm/h	43.76L/s	1.01m/s	0.04m ²	172mm	-	43.76L/s	Capacity?	Okay	
Max. Capac.	-	76.05L/s	1.10m/s	0.07m ²	283mm	0.006	75.61L/s	Velocity?	Okay	

			Title:	Winsor Managemen	Winsor Management			
				Ropata Village		Page No.		1
			Description:	Wastewater Pipes		Date	14/02/20	022
						Author:	War	ren
						Reviewer:		
						Revision:		Α
D .					0.75 /	·		
Pipe	Flow Method:	1		Min. Velocity :	0.75m/s	using	PDWF	
1 - Mar	inings with Cor	nstant n		Max. Velocity :	3.00m/s	using	PVVVF	
2 - Mar	nings with Var	iable n	Dedive		0-1-	h	11	
Calculation	ININGS WITH ESC	FITT'S HYDRAUIIC	Radius	one Calculations	Cate		Houses	
in Partially I	Filled Circular Pipe	s', Omer Akgiray, F	Published November 3 2004	in	Person	s per House =	3.5	
Environmer	tal Engineering Sc	ience					N	
	0.00000			USE	e Flow per Pel	rsons/Houses?	Yes	
ADWF =	0.00230	L/s/person				-	NI-	
+	Ų	- Area (na)			User	-low per Area?	NO	
	7.00				n Deeking Fe		Vee	
PDWF =	7.23	ADWF		U	se Peaking Fa	ictor per Area?	res	
		-0.2		Lloo Croundwator	Infiltration no	r Ding Longth?	Voo	
÷	Ð	-Area (na)			Troundwotor			
D\\/\\/E _	1				Croundwater	0.00		
F VV VV F =	Ding Longth		an rate (1/e/km)		Croundwater	0.43		
+		* Length upstr	eam of analysis (km)	UNKNOWN	Siounuwater	0.25	L/5/KIII	
+	0.00L/5/Km	* Area (ba)	cam or analysis (KIII)	Lico Dino Longth L	nflow Linetrop	m of Analysia?	No	
+	Ð	- Alea (IIa)		Use ripe Lengin i		III OI AIIAIYSIS?	INU	
Latera	I Length (m) =	20 m	* Catchment Units	Automatically add	laterals to pip	e main length?	Yes	

LINE 101

	Upper Node	Diameter	Water Table	Main Length			No. Houses	Area	Infilt. / Inflo	ЭW
Pipe		150 mm	Unknown	95 m	-	This catch:	20	2,024 m²	0.121 L	_/s
	SVVIVIH U8	150 mm	UNKNOWN	00 111	h: a					
SWMH 08	Lower Node	Slope	Manning n	Upstream of Analysis	Upstre Catc					
01111104	SWMH 04	1.60%	0.011			Total =	20	2,024 m²	0.121 L	_/s
	Flow	Hydraulic Radius	Velocity	Area of Flo	W	Air/Water Ratio	Flow (with air entrap.)	Porcont Full	70/	
ADWF	0.16 L/s	0.006 m	0.37 m/s	0.000	m²	-	0.16 L/s	Fercent Full	170	
PDWF	1.60 L/s	0.017 m	0.75 m/s	0.002	m²	-	1.60 L/s			
PWWF	1.72 L/s	0.018 m	0.77 m/s	0.002	m²	-	1.72 L/s	Capacity?	Okay	
Capacity	25.32 L/s	0.043 m	1.47 m/s	0.017	m²	0.020	24.82 L/s	Velocity?	Okay	

LINE 102

Pine	Upper Node	Diameter	Water Table	Main Length		This catch:	No. Houses	Area 2 110 m ²	Infilt. / Inflow
1 100	SWMH 06	150 mm	Unknown	85 m	E	This catori.	20	2,110 m	0.101 <u>L</u> /0
SWMH 06	Lower Node	Slope	Manning n	Upstream of Analysis	Upstrea Catch				
SWINIT 04	SWMH 04	1.50%	0.011			Total =	28	2,110 m ²	0.161 L/s
	Flow	Hydraulic Radius	Velocity	Area of Flo	w	Air/Water Ratio	Flow (with air entrap.)	Percent Full	10%
ADWF	0.23 L/s	0.007 m	0.41 m/s	0.001	m²	-	0.23 L/s		
PDWF	2.22 L/s	0.020 m	0.81 m/s	0.003	m²	-	2.22 L/s		
PWWF	2.39 L/s	0.020 m	0.83 m/s	0.003	m²	-	2.39 L/s	Capacity?	Okay
	24 52 1/2	0.042 m	1.42 m/s	0.017	m2	0.010	24.061/6	Valocity2	

Sizing.xlsx

Pipe	Upper Node	Diameter	Water Table	Main Length		This catch:	No. Houses	Area 4 134 m ²	Infilt. / Infl 0.261	ow L/s
	SWMH 04	150 mm	Unknown	85 m	ma ::		10	1,101111		
SWMH 04	Lower Node	Slope	Manning n	Upstream of Analysis	Upstre: Catch					
33MIT 03	SSMH 03	1.50%	0.011			Total =	48	4,134 m²	0.261	L/s
	Flow	Hydraulic Radius	Velocity	Area of Flo	W	Air/Water Ratio	Flow (with air entrap.)	Percent Full	15%	
ADWF	0.39 L/s	0.009 m	0.48 m/s	0.001	m²	-	0.39 L/s			
PDWF	3.33 L/s	0.023 m	0.91 m/s	0.004	m²	-	3.33 L/s			
PWWF	3.59 L/s	0.024 m	0.93 m/s	0.004	m²	-	3.59 L/s	Capacity?	Okay	
Capacity	24.52 L/s	0.043 m	1.42 m/s	0.017	m²	0.019	24.06 L/s	Velocity?	Okay	

